Skip to content

Dart tables

In relational databases, tables are used to describe the structure of rows. By adhering to a predefined schema, drift can generate type-safe code for your database. As already shown in the setup page, drift provides APIs to declare tables in Dart:

class TodoItems extends Table {
  
IntColumn get id => integer().autoIncrement()();
  
TextColumn get title => text().withLength(min: 6, max: 32)();
  
TextColumn get content => text().named('body')();
  
IntColumn get category =>
      
integer().nullable().references(TodoCategory, #id)();
  
DateTimeColumn get createdAt => dateTime().nullable()();
}

class TodoCategory extends Table {
  
IntColumn get id => integer().autoIncrement()();
  
TextColumn get description => text()();
}

This page describes the DSL for tables in more detail.

Columns

In each table, you define columns by declaring a getter starting with the type of the column, its name in Dart, and the definition mapped to SQL. In the example above, IntColumn get category => integer().nullable()(); defines a column holding nullable integer values named category. This section describes all the options available when declaring columns.

Supported column types

Drift supports a variety of column types out of the box. You can store custom classes in columns by using type converters.

Dart type Column Corresponding SQLite type
int integer() INTEGER
BigInt int64() INTEGER (useful for large values on the web)
double real() REAL
boolean boolean() INTEGER, which a CHECK to only allow 0 or 1
String text() TEXT
DateTime dateTime() INTEGER (default) or TEXT depending on options
Uint8List blob() BLOB
Enum intEnum() INTEGER (more information available here).
Enum textEnum() TEXT (more information available here).

Note that the mapping for boolean, dateTime and type converters only applies when storing records in the database. They don't affect JSON serialization at all. For instance, boolean values are expected as true or false in the fromJson factory, even though they would be saved as 0 or 1 in the database. If you want a custom mapping for JSON, you need to provide your own ValueSerializer.

Custom column types

While is constrained by the types supported by sqlite3, it supports type converters to store arbitrary Dart types in SQL.

class Users extends Table {
  
IntColumn get id => integer().autoIncrement()();
  
TextColumn get name => text()();

  
TextColumn get preferences =>
      
text().map(const PreferenceConverter()).nullable()();
}

For more information about type converters, see the page on type converters on this website.

BigInt support

Drift supports the int64() column builder to indicate that a column stores large integers and should be mapped to Dart as a BigInt.

This is mainly useful for Dart apps compiled to JavaScript, where an int really is a double that can't store large integers without losing information. Here, representing integers as BigInt (and passing those to the underlying database implementation) ensures that you can store large intergers without any loss of precision. Be aware that BigInts have a higher overhead than ints, so we recommend using int64() only for columns where this is necessary:

You might not need this!

In sqlite3, an INTEGER column is stored as a 64-bit integer. For apps running in the Dart VM (e.g. on everything except for the web), the int type in Dart is the perfect match for that since it's also a 64-bit int. For those apps, we recommend using the regular integer() column builder.

Essentially, you should use int64() if both of these are true:

  • you're building an app that needs to work on the web, and
  • the column in question may store values larger than 252.

In all other cases, using a regular integer() column is more efficient.

Here are some more pointers on using BigInts in drift:

  • Since an integer() and a int64() is the same column in sqlite3, you can switch between the two without writing a schema migration.
  • In addition to large columns, it may also be that you have a complex expression in a select query that would be better represented as a BigInt. You can use dartCast() for this: For an expression (table.columnA * table.columnB).dartCast<BigInt>(), drift will report the resulting value as a BigInt even if columnA and columnB were defined as regular integers.
  • BigInts are not currently supported by moor_flutter and drift_sqflite.
  • To use BigInt support on a WebDatabase, set the readIntsAsBigInt: true flag when instantiating it.
  • Both NativeDatabase and WasmDatabase have builtin support for bigints.

DateTime options

Drift supports two approaches of storing DateTime values in SQL:

  1. As unix timestamp (the default): In this mode, drift stores date time values as an SQL INTEGER containing the unix timestamp (in seconds). When date times are mapped from SQL back to Dart, drift always returns a non-UTC value. So even when UTC date times are stored, this information is lost when retrieving rows.
  2. As ISO 8601 string: In this mode, datetime values are stored in a textual format based on DateTime.toIso8601String(): UTC values are stored unchanged (e.g. 2022-07-25 09:28:42.015Z), while local values have their UTC offset appended (e.g. 2022-07-25T11:28:42.015 +02:00). Most of sqlite3's date and time functions operate on UTC values, but parsing datetimes in SQL respects the UTC offset added to the value.
    When reading values back from the database, drift will use DateTime.parse as following:
    • If the textual value ends with Z, drift will use DateTime.parse directly. The Z suffix will be recognized and a UTC value is returned.
    • If the textual value ends with a UTC offset (e.g. +02:00), drift first uses DateTime.parse which respects the modifier but returns a UTC datetime. Drift then calls toLocal() on this intermediate result to return a local value.
    • If the textual value neither has a Z suffix nor a UTC offset, drift will parse it as if it had a Z modifier, returning a UTC datetime. The motivation for this is that the datetime function in sqlite3 returns values in this format and uses UTC by default.
      This behavior works well with the date functions in sqlite3 while also preserving "UTC-ness" for stored values.

The mode can be changed with the store_date_time_values_as_text build option.

Regardless of the option used, drift's builtin support for date and time functions return an equivalent values. Drift internally inserts the unixepoch modifier when unix timestamps are used to make the date functions work. When comparing dates stored as text, drift will compare their julianday values behind the scenes.

Migrating between the two modes

While making drift change the date time modes is as simple as changing a build option, toggling this behavior is not compatible with existing database schemas:

  1. Depending on the build option, drift expects strings or integers for datetime values. So you need to migrate stored columns to the new format when changing the option.
  2. If you are using SQL statements defined in .drift files, use custom SQL at runtime or manually invoke datetime expressions with a direct FunctionCallExpression instead of using the higher-level date time APIs, you may have to adapt those usages.
    For instance, comparison operators like < work on unix timestamps, but they will compare textual datetime values lexicographically. So depending on the mode used, you will have to wrap the value in unixepoch or julianday to make them comparable.

As the second point is specific to usages in your app, this documentation only describes how to migrate stored columns between the format:

Note that the JSON serialization generated by default is not affected by the datetime mode chosen. By default, drift will serialize DateTime values to a unix timestamp in milliseconds. You can change this by creating a ValueSerializer.defaults(serializeDateTimeValuesAsString: true) and assigning it to driftRuntimeOptions.defaultSerializer.

Migrating from unix timestamps to text

To migrate from using timestamps (the default option) to storing datetimes as text, follow these steps:

  1. Enable the store_date_time_values_as_text build option.
  2. Add the following method (or an adaption of it suiting your needs) to your database class.
  3. Increment the schemaVersion in your database class.
  4. Write a migration step in onUpgrade that calls migrateFromUnixTimestampsToText for this schema version increase. Remember that triggers, views or other custom SQL entries in your database will require a custom migration that is not covered by this guide.
Future<void> migrateFromUnixTimestampsToText(Migrator m) async {
  
for (final table in allTables) {
    
final dateTimeColumns =
        table
.$columns.where((c) => c.type == DriftSqlType.dateTime);

    
if (dateTimeColumns.isNotEmpty) {
      
// This table has dateTime columns which need to be migrated.
      
await m.alterTable(TableMigration(
        table
,
        columnTransformer
: {
          
for (final column in dateTimeColumns)
            
// We assume that the column in the database is an int (unix
            
// timestamp), use `fromUnixEpoch` to convert it to a date time.
            
// Note that the resulting value in the database is in UTC.
            column
: DateTimeExpressions.fromUnixEpoch(column.dartCast<int>()),
        
}
,
      
))
;
    
}
  
}
}
Migrating from text to unix timestamps

To migrate from datetimes stored as text back to unix timestamps, follow these steps:

  1. Disable the store_date_time_values_as_text build option.
  2. Add the following method (or an adaption of it suiting your needs) to your database class.
  3. Increment the schemaVersion in your database class.
  4. Write a migration step in onUpgrade that calls migrateFromTextDateTimesToUnixTimestamps for this schema version increase. Remember that triggers, views or other custom SQL entries in your database will require a custom migration that is not covered by this guide.
Future<void> migrateFromTextDateTimesToUnixTimestamps(Migrator m) async {
  
for (final table in allTables) {
    
final dateTimeColumns =
        table
.$columns.where((c) => c.type == DriftSqlType.dateTime);

    
if (dateTimeColumns.isNotEmpty) {
      
// This table has dateTime columns which need to be migrated.
      
await m.alterTable(TableMigration(
        table
,
        columnTransformer
: {
          
for (final column in dateTimeColumns)
            
// We assume that the column in the database is a string. We want
            
// to parse it to a date in SQL and then get the unix timestamp of
            
// it.
            
// Note that this requires sqlite version 3.38 or above.
            column
: FunctionCallExpression('unixepoch', [column]),
        
}
,
      
))
;
    
}
  
}
}

Note that this snippet uses the unixepoch sqlite3 function, which has been added in sqlite 3.38. To support older sqlite3 versions, you can use strftime and cast to an integer instead:

columnTransformer: {
  
for (final column in dateTimeColumns)
    
// Use this as an alternative to `unixepoch`:
    column
: FunctionCallExpression(
        
'strftime', [const Constant('%s'), column]).cast<int>(),
}
,

When using a NativeDatabase with a recent dependency on the sqlite3_flutter_libs package, you can safely assume that you are on a recent sqlite3 version with support for unixepoch.

Nullability

Drift follows Dart's idiom of non-nullable by default types. This means that columns declared on a table defined in Dart can't store null values by default, they are generated with a NOT NULL constraint in SQL. When you forget to set a value in an insert, an exception will be thrown. When using sql, drift also warns about that at compile time.

If you do want to make a column nullable, just use nullable():

class Items extends Table {
  
IntColumn get category => integer().nullable()();
  
// ...
}

References

Foreign key references can be expressed in Dart tables with the references() method when building a column:

class TodoItems extends Table {
  
// ...
  
IntColumn get category =>
      
integer().nullable().references(TodoCategories, #id)();
}

@DataClassName("Category")
class TodoCategories extends Table {
  
IntColumn get id => integer().autoIncrement()();
  
// and more columns...
}

The first parameter to references points to the table on which a reference should be created. The second parameter is a symbol of the column to use for the reference.

Optionally, the onUpdate and onDelete parameters can be used to describe what should happen when the target row gets updated or deleted.

Be aware that, in sqlite3, foreign key references aren't enabled by default. They need to be enabled with PRAGMA foreign_keys = ON. A suitable place to issue that pragma with drift is in a post-migration callback.

Default values

You can set a default value for a column. When not explicitly set, the default value will be used when inserting a new row. To set a constant default value, use withDefault:

class Preferences extends Table {
  TextColumn get name => text()();
  BoolColumn get enabled => boolean().withDefault(const Constant(false))();
}

When you later use into(preferences).insert(PreferencesCompanion.forInsert(name: 'foo'));, the new row will have its enabled column set to false (and not to null, as it normally would). Note that columns with a default value (either through autoIncrement or by using a default), are still marked as @required in generated data classes. This is because they are meant to represent a full row, and every row will have those values. Use companions when representing partial rows, like for inserts or updates.

Of course, constants can only be used for static values. But what if you want to generate a dynamic default value for each column? For that, you can use clientDefault. It takes a function returning the desired default value. The function will be called for each insert. For instance, here's an example generating a random Uuid using the uuid package:

final _uuid = Uuid();

class Users extends Table {
    TextColumn get id => text().clientDefault(() => _uuid.v4())();
    // ...
}

Don't know when to use which? Prefer to use withDefault when the default value is constant, or something simple like currentDate. For more complicated values, like a randomly generated id, you need to use clientDefault. Internally, withDefault writes the default value into the CREATE TABLE statement. This can be more efficient, but doesn't support dynamic values.

Checks

If you know that a column (or a row) may only contain certain values, you can use a CHECK constraint in SQL to enforce custom constraints on data.

In Dart, the check method on the column builder adds a check constraint to the generated column:

  // sqlite3 will enforce that this column only contains timestamps happening after (the beginning of) 1950.
  DateTimeColumn get creationTime => dateTime()
      .check(creationTime.isBiggerThan(Constant(DateTime(1950))))
      .withDefault(currentDateAndTime)();

Note that these CHECK constraints are part of the CREATE TABLE statement. If you want to change or remove a check constraint, write a schema migration to re-create the table without the constraint.

Unique column

When an individual column must be unique for all rows in the table, it can be declared as unique() in its definition:

class TableWithUniqueColumn extends Table {
  
IntColumn get unique => integer().unique()();
}

If the combination of more than one column must be unique in the table, you can add a unique table constraint to the table.

Custom constraints

Some column and table constraints aren't supported through drift's Dart api. This includes the collation of columns, which you can apply using customConstraint:

class Groups extends Table {
  TextColumn get name => integer().customConstraint('COLLATE BINARY')();
}

Applying a customConstraint will override all other constraints that would be included by default. In particular, that means that we need to also include the NOT NULL constraint again.

You can also add table-wide constraints by overriding the customConstraints getter in your table class.

Names

By default, drift uses the snake_case name of the Dart getter in the database. For instance, the table

import 'package:drift/drift.dart';

class EnabledCategories extends Table {
  
IntColumn get parentCategory => integer()();
}

Would be generated as CREATE TABLE enabled_categories (parent_category INTEGER NOT NULL).

To override the table name, simply override the tableName getter. An explicit name for columns can be provided with the named method:

@DataClassName('EnabledCategory')
class EnabledCategories extends Table {
  
@override
  
String get tableName => 'categories';

  
@JsonKey('parent_id')
  
IntColumn get parentCategory => integer().named('parent')();
}

The updated class would be generated as CREATE TABLE categories (parent INTEGER NOT NULL).

To update the name of a column when serializing data to json, annotate the getter with @JsonKey.

You can change the name of the generated data class too. By default, drift will stip a trailing s from the table name (so a Users table would have a User data class). That doesn't work in all cases though. With the EnabledCategories class from above, we'd get a EnabledCategorie data class. In those cases, you can use the @DataClassName annotation to set the desired name.

Existing row classes

By default, drift generates a row class for each table. This row class can be used to access all columns, it also implements hashCode, operator== and a few other useful operators. When you want to use your own type hierarchy, or have more control over the generated classes, you can also tell drift to your own class or type:

typedef Category = ({int id, String name});

@UseRowClass(Category)
class Categories extends Table {
  
IntColumn get id => integer().autoIncrement()();
  
TextColumn get name => text()();
}

Drift verifies that the type is suitable for storing a row of that table. More details about this feature are described here.

Table options

In addition to the options added to individual columns, some constraints apply to the whole table.

Primary keys

If your table has an IntColumn with an autoIncrement() constraint, drift recognizes that as the default primary key. If you want to specify a custom primary key for your table, you can override the primaryKey getter in your table:

class GroupMemberships extends Table {
  
IntColumn get group => integer()();
  
IntColumn get user => integer()();

  
@override
  
Set<Column> get primaryKey => {group, user};
}

Note that the primary key must essentially be constant so that the generator can recognize it. That means:

  • it must be defined with the => syntax, function bodies aren't supported
  • it must return a set literal without collection elements like if, for or spread operators

Unique columns in table

When the value of one column must be unique in the table, you can make that column unique. When the combined value of multiple columns should be unique, this needs to be declared on the table by overriding the uniqueKeys getter:

class IngredientInRecipes extends Table {
  
@override
  
List<Set<Column>> get uniqueKeys => [
        
{recipe
, ingredient},
        
{recipe
, amountInGrams}
      
]
;

  
IntColumn get recipe => integer()();
  
IntColumn get ingredient => integer()();

  
IntColumn get amountInGrams => integer().named('amount')();
}

Custom constraints on tables

Some table constraints are not directly supported in drift yet. Similar to custom constraints on columns, you can add those by overriding customConstraints:

class TableWithCustomConstraints extends Table {
  
IntColumn get foo => integer()();
  
IntColumn get bar => integer()();

  
@override
  
List<String> get customConstraints => [
        
'FOREIGN KEY (foo, bar) REFERENCES group_memberships ("group", user)',
      
]
;
}

Index

An index on columns in a table allows rows identified by these columns to be identified more easily. In drift, you can apply an index to a table with the @TableIndex annotation. More than one index can be applied to the same table by repeating the annotation:

@TableIndex(name: 'user_name', columns: {#name})
class Users extends Table {
  
IntColumn get id => integer().autoIncrement()();
  
TextColumn get name => text()();
}

Each index needs to have its own unique name. Typically, the name of the table is part of the index' name to ensure unique names.